
Instantaneous Utilization Based Scheduling
Algorithms for Real Time Systems

Radhakrishna Naik1, R.R.Manthalkar2
Pune University1, SGGS Nanded2

Abstract –
 This paper proposes a new novel scheduling algorithms to schedule
periodic tasks for soft real time system. This is a planning based offline
scheduler where tasks are scheduled on the basis of its instantaneous
utilization. Here after every quantum of execution, instantaneous utilization
of each task is calculated. Task which is having highest instantaneous
utilization is scheduled to the processor. Since Instantaneous utilization
factor(IUF) is temporarily variant factor, the priority of each task will vary
continuously. Also It is often more desirable to complete some portions of
every task rather than giving up completely the processing of some tasks.
The Imprecise Computation Model was introduced to allow for the trade-
off of the quality of computations in favor of meeting the deadline
constraints. It is observed that scheduling performance metrics such as
schedulability, CPU utilization, context switching, response time and
reliability are improved by this approach as compared to scheduling
algorithms such as RM, EDF, LLF, MUF scheduling algorithms.
KEYWORDS:
RM: Rate monotonic, EDF: Earliest deadline first, LLF: Least laxity first,
MUF: Maximum urgency first, IUF: Instantaneous utilization first, IRIS:
Increased reward with increased service. MIUF: Modified instantaneous
scheduling algorithm.

I. INTRODUCTION

As soft real-time systems are less restrictive in nature, it is

required that the critical processes receive priority over less
critical ones. In a soft real-time system, missing some
deadlines will lower the performance of the system, but
system will still continue to operate. Preemptive schedulers
usually offer better overall system utilization. So they are
preferred over non preemptive schedulers. Deadline parameter
of a request is the amount of time given to the system to
execute and complete the request after it is arrived.
Preemptive real-time scheduling algorithms can be broadly
classified into two categories: static priority and dynamic
priority. This classification is based on the manner in which
priorities are assigned to tasks. A scheduling algorithm is said
to be static if priorities are assigned to tasks a priori and do
not change during run-time, for example Rate Monotonic
(RM) Algorithm. A scheduling policy is said to be dynamic if
the priorities of a task might change from request to request,
for example Earliest Deadline First (EDF) algorithm. Static
priority and dynamic priority scheduling has received
tremendous attraction after pioneering work done by Liu and
Layland [1]. RM Assigns priority of each task according to its
period, so that the shorter periods get the higher priority. Liu
and Layland have also found stronger utilization for a
dynamic priority assignment policy called EDF. A task is
assigned highest priority if its deadline is nearest and will be

assigned lowest priority if deadline is farthest. The problem
with RM scheduling algorithms is that-

 Unfortunately, with static scheduling, resources must be
allocated pessimistically and scheduled under the assumption
that interrupts occur at the maximum rate. When they do not,
utilization is effectively reduced because unused resources
cannot be reallocated.

 As the priorities cannot be changed easily at run-time,
allocations must be based on worst-case conditions. Thus, if
an operation requires 8 msec, static scheduling analysis must
assume that 8 msec will be required for every invocation.
Again, utilization is effectively penalized because the resource
will be idle for 3 msec in the usual case.

 From a scheduling perspective, the main advantage of EDF
and least laxity first (LLF) is that they overcome the
utilization limitations of RM. In particular, the utilization
phasing penalty. This is because EDF and LLF prioritize
operations according to their dynamic run-time
characteristics. They handle harmonic and non-harmonic
periods comparably, and respond flexibly to invocation-to-
invocation variations in resource requirements, allowing CPU
time one operation does not use to be reallocated to other
operations. Thus, they can produce schedules that are optimal
in terms of CPU utilization.

 Purely dynamic scheduling approaches like LLF and EDF
potentially relieve the utilization limitations of the static RM
approach. However, they have a higher cost to evaluate the
scheduling algorithm at run-time. In addition, these purely
dynamic scheduling strategies offer no control over which
operations will miss their deadlines if the schedulable bound
is exceeded. As operations are added to the schedule to
achieve higher utilization, the margin of safety for all
operations decreases. Therefore, the risk of missing a deadline
increases for every operation as the system becomes
overloaded.

We have designed the scheduler by considering simple
utilization based schedulability analysis technique. Our paper
proposes dynamically changing priority based pre-emptive
scheduling algorithm based on the instantaneous utilization of
the task. Instantaneous utilization factor (IUF) is the processor
utilization of the task at any instant. Priority of the task is based
on this IUF of each task in the given task set. Since the IUF is
the temporarily variant factor, the priority of each task varies
continuously. Algorithm like maximum utilization first [MUF]/
maximum urgency first [MUF] have also dwelled on the idea of

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

654

scheduling according to utilization of the task . But this
algorithm has considered the static utilization of the task rather
than their instantaneous utilization value. IUF has number of
interesting characteristics. The IUF maximizes utilization bound
of schedule and has the capability to accommodate larger task
set. IUF has capability of dynamic predictability i.e. we can
predict the status of our scheduler at any instant of time in the
future and whether the schedule will still remain feasible.
This paper suggests two algorithms

1. Instantaneous utilization first real time scheduling
algorithm.

2. Modified IUF real time scheduling algorithm.

Thus contribution of this paper is to enhance context
switching, response time and CPU utilization than that of IUF
scheduling algorithm.

II. RELATED WORK

Liu and Layland [1] were perhaps the first to formally study
priority driven algorithms. They focused on the problem of
scheduling periodic tasks on a single processor and proposed
two preemptive algorithms, RM and EDF. RM algorithm
assigns priorities to tasks based on their period. Higher the
priority with shorter periods. Maximum utilization bound
achieved is 69 %.This often referred as schedulability test. This
test is true if period of invocation of task is equal to relative
deadline of tasks. Inverse deadline allows a weakening of the
condition which requires equality between periods and deadlines
in static-priority schemes. The inverse deadline algorithm [2]
assigns priorities to tasks according to their deadlines: the task
with the shortest relative deadline is assigned the highest
priority. Inverse deadline is optimal in the class of fixed-priority
assignment algorithms in the sense that if any fixed-priority
algorithm can schedule a set of tasks with deadlines shorter than
periods, than inverse deadline will also schedule that task set.
The computation given in the previous section can be extended
to the case of two tasks with deadlines shorter than periods,
scheduled with inverse deadline.
With dynamic priority assignment algorithms, priorities are
assigned to tasks based on dynamic parameters that may change
during task execution. The most important algorithms in this
category are earliest deadline first [1] and least laxity first [3,4]
The Maximum Urgency First (MUF) [5] scheduling algorithm
supports both the deterministic rigor of the static RM scheduling
approach and the flexibility of dynamic scheduling approaches
such as EDF and MLF. RM assigns all priority components
statically and EDF/LLF assigns all priority components
dynamically. In contrast, MUF can assign both static and
dynamic priority components.

Priorities can be assigned statically or dynamically based on
different criteria like deadline, criticality, periodicity etc.
Dynamic scheduling can be preemptive or non-preemptive K.
Ramamritham, J.A Stankovic [6] work on 4-scheduling

paradigms. Static table driven approaches are applicable to tasks
that are periodic. Tables are constructed by using heuristics that
identify the state and completion times of each task and tasks
are dispatched according to this table. This is highly predictable
approach, but is highly inflexible since any change to the tasks
and their characteristics may require a complete overhaul of the
table.
 Utilization bound tests were first proposed Goossens et al. [7]
in which it is assumed that tasks have relative deadline equal to
their period. Baker [8] slightly modified the assumption such
that utilization bound test can be performed on tasks with
relative deadline less than or equal to their period. Baker derived
simple sufficient conditions for schedulability of systems of
periodic or sporadic tasks in a multiprocessor preemptive
scheduling environment.

 Imprecise Computation Model was introduced [9] to allow
for the trade-off of the quality of computations in favor of
meeting the deadline constraints. In this model, a task is
logically decomposed into two subtasks, mandatory and
optional. The mandatory subtask of each task is required to be
completed by its deadline, while the optional subtask can be left
unfinished. If a task has an unfinished optional subtask, it incurs
an error equal to the execution time of its unfinished portion.
The Imprecise Computation Model is designed to model an
iterative algorithm, where the task initially spends some time for
initialization (the mandatory subtask) and then iterates to
improve the quality of the solution (the optional subtask). Since
the optional subtask corresponds to iterations to improve the
quality of the solution, it can be left unfinished and still obtain a
solution with a somewhat inferior quality. In this way, we can
trade off the quality of the computation in favor of meeting
deadlines. Therefore we considered quantum size equal to its
mandatory portion and scheduled according to instantaneous
utilization and optional portion is scheduled according to
shortest job first criteria.

In this paper we propose that ,if in case there is fault, while
executing mandatory portion, it has been suggested to provide
redundancy to the mandatory portion as the faults of interest are
those that are transient. Castillo et al. [10] in their study of
several systems indicates that the occurrences of transient faults
are 10 to 50 times more frequent than permanent faults. In some
applications this frequency can be quite large; one experiment
on a satellite system observed 35 transient faults in a 15 minute
interval due to cosmic ray ions [11]. To provide the flexibility
needed to program fault tolerance, fixed priority preemptive
scheduling suggested by A. Campbell et al. [12] can be used.

Arshad Iqbal and Asia Zafar[13] suggest that the
design and analysis of a new scheduling algorithm. Dynamic
Queue Deadline First (DQDF) to handle scheduling of dynamic
multiple tasks in real time systems. They provide a approach
that reduced the dead-line missing ratio but it has a higher CPU
overhead.

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

655

III. INSTANTANEOUS UTILIZATION SCHEDULING

ALGORITHM FRAMEWORK

A. Contribution of this paper
In this paper, the problem of predicting missing of deadline at
any instant of time, low CPU overhead, justification of all tasks,
no preemption and higher schedulability are addressed.
First we propose a framework of IUF scheduling algorithm, we
run the case study for the same and finally we perform
comparative evolution of RM , EDF,LLF and IUF.

B. System model

I

N

P

U

T

T

A

S

K

 TASK

SELECT

UPDATER

CPU

RUN TIME
QUEUE

READY
QUEUE

Figure 1.Architecture of IUF framework
 This is basically a planning based scheduling algorithm
where priorities are assigned based on Instantaneous Utilization
.Every task is schedule for fix quantum of time .Planning of
scheduling is considered for first iteration of period of
invocation of the tasks. The quantum for which task is applied to
CPU is Qi. The total sum of quantum of all task (for that
quantum iteration only) is ∑Qi=Q.
In this framework, for given task set ,PTC is calculated by-
 PTC =LCM{period of invocation of all tasks }
Now for time span equal to PTC tasks are mapped to CPU in
following steps-
Step1:- Initially for given task set, calculate CPU utilization of
each task using formula

i
0 U = i

0 C / i
0 P (1)

 i
0 U =Initial utilization of ith task.

 i
0 C =Initial computation time.

 i
0 P =Initial period of invocation.

Based on utilization [i
0 U] the task which is having higher value

of Utilization is mapped for the CPU.
Step2:- Now in a given PTC, one task has executed for one

quantum of time. Again calculate value of i
1 C , i

1 P by using

following formula-
i i
1 0 i C =C -Q . (2)

 i i
1 0 P =P -Q . (3)

 Where ∑Qi=Q.
 Then calculate new Instantaneous Utilization factor for
ith task for using formula 1 and 2

i i i
1 1 1 U =C / P . (4)

Where ,
i
1 C =Instantaneous computation time for ith task

 i
1 P = Instantaneous period of execution of ith task.

 i
1 U =Instantaneous Utilization of ith task.

For second iteration of time Derive the table (Ti,
i
1 C , i

1 P ,
i
1 U)

Again the task which is having highest instantaneous
utilization will be having highest priority of execution for
second iteration quantum.
 Like wise, calculate

i
j C = i

j-1 C -Qi . (5)

i
j P = i

j-1 P -Q . (6)

Calculate i
j U using equation 4 and 5

i
j U = i

j C / i
j P . (7)

Where,
i
j U =Instantaneous utilization of ith task for the jth iteration of

quantum
 j = PTC end point.
Step 3: Hence task sequence in first PTC is derived. It is
observed that at every step we can check whether the

instantaneous utilization is less than initial utilization i
0 U .If at

any given instant of time, it is observed that it is greater than
i
0 U , it means that task is going to miss its deadline.

It is observed that in first PTC span , there is higher context
switching between the task. In order to avoid context switching
we are suggesting concept of run time data structure (run time

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

656

queue).Tasks are shuffled in run time queue as shown in figure
2.

Figure 2. Task Shuffling

 Initially in PTC span, consider time span between T0
and T1 shuffling the quantum of tasks which are similar. Then
consider time span between T1 and T2 again shuffle the quantum
of tasks which are similar. Lastly consider time span between T2
and PTC –end and shuffle the quantum of tasks.

C. A Case Study: IUF Scheduling Algorithm

Consider following task set
T1= (3, 9), T2= (5, 11), T3= (7, 38)
1. Calculate initial utilization using equation (1)

i
0 U = i

0 C / i
0 P

TABLE I. INITIAL TASK SET.
 Ti Ci Pi Ui
T1 3 9 0.33
 T2 5 11 0.45
T3 7 38 0.18
2. After first step, in Table 1 we observed that T2 has the higher
initial utilization so is mapped for execution.
For 1 Quantum
 Calculate the new values of C1, P1, and U1 using the
following value:

1
0C =3 1

0P =9 Q1=0
2
0C =5 2

0P =11 Q2=1
3
0C =7 3

0P =38 Q3=0

 Q=∑ (Qi) =0+1+0=1
Now using the formula,

 i i
1 0 i C =C -Q

 i i
1 0 P =P -Q

 Then calculate new Instantaneous Utilization factor for
ith task by using formula 1 and 2-

 i i i
1 1 1 U =C / P

 1
1 U = 1

0C -Q1/
1
0P -Q = 3-0/9-1 = 0.37

 2
1 U = 2

0C -Q2/
2
0P -Q = 5-1/11-1 = 0.40

 3
1 U = 3

0C -Q3/
3
0P -Q = 7-0/38-1 = 0.18

Now we get the new task set as

TABLE II. TASK SET AFTER ONE QUANTUM OF

EXECUTION.
 Ti Ci Pi Ui
T1 3 8 0.37
 T2 4 10 0.40
T3 7 37 0.18

3. Again here we observed that the task T2 has higher
instantaneous utilization so allow it for execution and
recalculate the task set for the next quantum of execution time.

1
1C =3 1

1P =8 Q1=0
2
1C =4 2

1P =10 Q2=1
3
1C =7 3

1P =37 Q3=0

 Q=∑ (Qi) =0+1+0=1
Now using the formula,

i
2 U = i

1C -Qi/
i

1P -Q
1
2 U = 1

1C -Q1/
1
1P -Q = 3-0/8-1 = 0.42

2
2 U = 2

1C -Q2/
2

1P -Q = 4-1/10-1 = 0.33
3
2 U = 3

1C -Q3/
3

1P -Q = 7-0/37-1 = 0.19

Now we get the new task set as:
TABLE III. TASK SET AFTER SECOND QUANTUM OF

EXECUTION.
 Ti Ci Pi Ui
T1 3 7 0.42
 T2 3 9 0.33
T3 7 36 0.19
4. Again task T1 has higher instantaneous utilization so allow it
execution and recalculate the task set for the next quantum of
execution time .
5. Continue this process till, we get ith quantum of execution
time i.e. i=PTC_END_POINT using formula:

i
j U = i

j-1 C -Qi /
i
j-1 P -Q

Now consider run time queue of size PTC and shuffle tasks in
run time queue. After shuffling tasks in run time queue, tasks
are applied to CPU as shown in fig.3.

D.RESULT ANALYSIS

Given task set is simulated using CHEDDER a real time
simulator for RM , EDF and LLF and observed context
switching, number of preemptions and deadline missing
possibility for each scheduler. We have also designed simulator
for our algorithm in C and observed the same parameters with
our simulator we are getting following results.

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

657

TABLE IV .COMPARISON OF IUF WITH OTHER

SCHEDULERS.
Factors IUF RM EDF LLF
Context Switching 16 13 12 19
CS Ratio 0.42 0.34 0.31 0.50
Response time Average High High Average
Schedulability High Low High Average
No. of Preemptions 0 3 4 9

It is clear from fig. 4 and 5 that, although context switching is
high comparative to other algorithms but number of preemptions
are zero hence it increases schedulability of tasks .

0 65321 4 7 8 9 10 11 12 13 14 15

15 2120181716 19 22 23 24 25 26 27 28 29 30

30 3635333231 34 37 38 39

30 3635333231 34 37 38 39

0 65321 4 7 8 9 10 11 12 13 14 15

15 2120181716 19 22 23 24 25 26 27 28 29 30

1 1 1 1 1 12 2 2 2 2 2 2 2 2

2 2 2 2 2 23 3 3 3 31 1 1 1

2 2 2 23 31 1

1 2 1

1 21 2 3 

1 1 1 1 1 12 2 2 2 2 2223

2 2 2 2 2 2 2

2 2 21 1 1 1 1

1 1 13 3 3 3

3

3

 After Shuffling

 Before Shuffling

 Figure 3.Shuffling Of Tasks Using Run Time Queue For A
 Given Tasks Set.

0

5

10

15

20

25

IUF RM EDF LLF

N
o

.
o

f
C

o
n

te
xt

 S
w

it
ch

in
g

 

Figure 4: Comparative context switching of IUF with other
 Scheduling algorithms

0

1

2

3

4

5

6

7

8

9

10

IUF RM EDF LLF

N
o

.
o

f
P

re
em

p
ti

o
n

s



Figure 5: Comparative preemptions of IUF with other
 Scheduling algorithms

IUF scheduling algorithm [14] has the drawback that context
switching is very high since in this algorithm, shuffling of tasks
is suggested; this loses intention of priority assignment.
Therefore there is need to modify IUF scheduling algorithm so
as to reduce context switching. In proposed framework tasks are
logically divided into mandatory and optional portion. All
mandatory portions are scheduled according to instantaneous
utilization like IUF. This paper proposes a new approach where
imprecise computation model is used ,where task is logically
divided into two parts, mandatory and optional part. Priority of
the mandatory portion of task is based on this IUF. Since the
IUF is a temporally variant factor, the priority of each task will
vary continuously. Optional portions are scheduled by shortest
job first. Experimentally it is proved that it increases CPU
utilization effectively. It also handles harmonic and non
harmonic periods comparably. Number of missing deadlines is
less. In order to improve reliability, the active mandatory
portion is loaded as redundant copy so that if at all mandatory
portion is failed due to some reason, at least mandatory portion
will get executed. Thus by compromising in performability, it
enhances reliability through redundancy. The main advantage of
this framework is that there is no need to include error recovery
points in program which avoids system overheads.

IV. MODIFIED IUF REAL TIME SCHEDULING
ALGORITHM

A block diagram of proposed framework is shown in the
figure 1. This is basically a planning based offline preemptive
scheduling algorithm where priorities are assigned based on

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

658

Instantaneous Utilization. Every task is scheduled for fixed
quantum of time i.e. for mandatory part of task.

Basic assumptions of the system
1. Given task set is considered as IRIS task (Increased reward

with increased service).
2. Initially task is divided into two parts:

i) Mandatory portion,
ii) Optional portion.

3. Consider arrival time of all task =0.
4. Period of task is equal to its relative deadline.
5. The soft real-time system is considered where system will

tolerate lateness with decreased service quality but no
critical consequences.

B. System Model

Phase 1: Divide the task into two parts

Consider two portion of the task from the given task set as
 i) Mandatory portion, ii) Optional portion.

Phase 2: scheduling of the mandatory portion of task using IUF

Step 1:- Initially for given task set, calculate CPU utilization of
each task using formula

 0
0

0

i
i

i

C
U

P
 (8)

Figure 6: Architecture of MIUF Framework.

i

0
U =Initial utilization of i th task.

 i

0
C =Initial computation time of.

i

0
P =Initial period of invocation.

 Based on utilization [i

0
U] the task which is having higher

value of Utilization, mandatory portion of this task is mapped to
the CPU.

Step 2:- One task has executed for one quantum (equal to
mandatory portion) of time. Again calculate value of

i

1
Q Q , i

1
P by using following formula-

 1 0

i i

iC C Q  . (9)

 1 0

i iP P Q  . (10)

 Where i

1
Q Q ,

 Then calculate new Instantaneous Utilization factor for ith task
for using formula 1 and 2

 1
1

1

i
i

i

CU
P

 (11)

Where,

 i

1
C =Instantaneous computation time for ith task

 i

1
P = Instantaneous period of execution of ith task.

 i

1
U =Instantaneous Utilization of ith task.

 For second iteration of time derive the table (Ti,
i

1
C , i

1
P , i

1
U)

 Again the task which is having highest instantaneous
utilization will be having highest priority of execution for
second iteration quantum.
 Like wise, calculate

 1

i i

j j iC C Q  (12)

 1

i i

j jP P Q  (13)

Calculate i

j
U using equation 4 and 5

i

i j
ij
j

C
U

P
 (14)

Where,

i

j
U =Instantaneous utilization of ith task for the jth iteration of

quantum.
At any given instant of time, If it is observed that, instantaneous

utilization is greater than i

0
U , it means that task is going to miss

its deadline.
Phase 3: scheduling the optional portion of the task
For scheduling the optional portion, shortest optional portion
first is employed.

ALGORITHM

1) Take input of tasks containing period, mandatory execution
time, and optional execution time.
2) Calculate the mandatory utilization and optional utilization
for each task.

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

659

3) Check the schedulability for tasks according to their
utilization
4) Generate CPU mapping for tasks.
5) Execute the mandatory portion of tasks according to the
highest instantaneous utilization. Meanwhile if there is interrupt
due to corruption of task while executing the mandatory portion
of task then a backup image is maintained so that the task can be
restored from the image.
6) After executing mandatory portion of all tasks execute
optional portion according the shortest job first policy.
7) If interrupt occurs due to corruption of task in the optional
portion of task then optional portion does not run to its
completion and gets aborted.

B. Result Analysis

 Various tasks sets have been applied to MIUF scheduler
simulator and it has been observed that context switching,
response time and CPU utilization is improved .Following table
I to X shows how tasks are selected and scheduled using MIUF.
Here, M= Mandatory portion of task for execution,

O= Optional Portion of the task for execution,
P = Period/Deadline of task.

 TABLE V: GIVEN TASK SET WITH EXECUTION TIME AND PERIOD

 TABLE VI: SELECTION OF FIRST MANDATORY TASK

 TABLE VII: SELECTION OF SECOND MANDATORY TASK

 TABLE VIII: SELECTION OF THIRD MANDATORY TASK

 TABLE IX: SELECTION OF FOURTH MANDATORY TASK

 TABLE X: SELECTION OF FIRST OPTIONAL TASK

 TABLE XI: SELECTION OF SECOND OPTIONAL TASK

 TABLE XII: SELECTION OF THIRD OPTIONAL TASK

 TABLE XIII: SELECTION OF FOURTH OPTIONAL TASK

TABLE XIV: FINALLY ALL TASKS ARE GETTING SCHEDULED

Here, the table XV indicates the complete case study for the

given set of tasks. It also indicates the time interval and the
description how the task get schedules.

Task M O P
T1 2 2 18
T2 3 2 20
T3 2 1 16
T4 2 1 15

Task M O P U(M)
T1 2 2 15 0.13
T2 0 2 17 0.00
T3 2 1 13 0.15
T4 2 1 12 0.16

Task M O P U(M)
T1 2 2 13 0.15
T2 0 2 15 0.00
T3 2 1 11 0.18
T4 0 1 10 0.00

Task M O P U(M)
T1 2 2 11 0.18
T2 0 2 13 0.00
T3 0 1 9 0.00
T4 0 1 8 0.00

Task M O P U(M)
T1 0 2 9 -
T2 0 2 11 -
T3 0 1 7 -
T4 0 1 6 -

Task M O P U(M)
T1 0 2 8 -
T2 0 2 10 -
T3 0 1 6 -
T4 0 0 5 -

Task M O P U(M)
T1 0 2 7 -
T2 0 2 9 -
T3 0 0 5 -
T4 0 0 4 -

Task M O P U(M)
T1 0 0 5 -
T2 0 2 7 -
T3 0 0 3 -
T4 0 0 2 -

Task M O P U(M)
T1 0 0 3 -
T2 0 0 5 -
T3 0 0 1 -
T4 0 0 0 -

Task M O P U(M)
T1 2 2 18 0.11
T2 3 2 20 0.15
T3 2 1 16 0.12
T4 2 1 15 0.13

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

660

Administrator
Line

 TABLE XV: DESCRIPTION OF TASK SCHEDULE.

The said algorithm is simulated in Microsoft Visual Basic 6 and
existing algorithms are simulated using CHEDDER simulator.
1. We attempt to keep the framework as general as possible by

accommodating ‘software’ faults tolerated by some form of
recovery block, and ‘hardware’ faults dealt with by state
restoration and re-execution. Error latencies will be assumed
to be short and hence tried to enhance reliability of scheduler.

2. The previous IUF algorithm has more number of context
switches as the quantum considered is too small. But in the
proposed algorithm, the context switches get minimized as the
quantum considered is the mandatory portion of task(fig.7)
The task switch from one to another at every unit instance.
But for proposed algorithm it is very less. The following table
shows the analysis of the results for previous IUF algorithm
and proposed algorithm.

TABLE XVI: COMPARATIVE RESULTS OF VARIOUS CASE STUDIES

0 Case 1 Case 2 Case 3
0

2

4

6

8

10

12

14

16

N
o.

 o
f
C

on
te

xt
 S

w
itc

hi
ng

 

IUF

MIUF

Figure 7: Comparative Context Switching of MIUF and IUF

0 Case 1 Case 2 Case 3
0

2

4

6

8

10

12

14

16

N
o.

 o
f
C

on
te

xt
 S

w
itc

hi
ng

 

IUF

MIUF

Figure 8: Comparative schedulability of MIUF and
IUF scheduling algorithm.

Schedulability of MIUF is improved than IUF scheduling
algorithm.(Fig.8).

Task 1 Task 2 Task 3
0

2

4

6

8

10

12

14

16

18

20

R
es

p
o

n
se

 t
im

e



IUF

IUF

IUF

MIUF
MIUF

MIUF

Graph for case study 1
Figure 9: Comparative response time of MIUF and
 IUF scheduling algorithm.
Response Time observed in MIUF is less than that of IUF(fig.9)
also in MIUF CPU utilization is also increased considerably.

Context

switching
Response time
(T1, T2, T3)

CPU Utilization
(In %)

Case
study

IUF MIUF IUF MIUF IUF MIUF

1 15 7 14,15,12
10,11,

13
17 22

2 11 5 12 ,11, 10 7, 9 ,10 22 28

3 10 5 11,12,10 8,10,12 20 25

Time
Interval

Executing
Task

Description

0 M(T2) Mandatory part of Task T2 has highest
instantaneous utilization so it gets executed
first until its computation is over.

3 M(T4) Now, Mandatory part of Task T4 has
highest instantaneous utilization so it gets
executed.

5 M(T3) Then, Mandatory part of Task T3 has
highest instantaneous utilization so it gets
executed.

7 M(T1) Finally, Mandatory part of Task T3
has highest instantaneous utilization so it
gets executed.

9 O(T4) After completing mandatory part of all
tasks, Task T3 has lowest optional part so it
gets executed. Here optional portion are
equal tie is broken on FCFS.

10 O(T3) Now, Task T4 has lowest
Optional part so it gets executed.

11 O(T1) Then, Task T1 has lowest optional part so
it gets executed.

13-15 O(T2) At last, Task T2 has lowest
 optional part so it gets executed.

- - All tasks have completed their
mandatory as well as optional portion.
Second iteration starts.

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

661

V. CONCLUSION

Approach of IUF is better than traditional scheduling
approaches. First attempt of IUF has better performance in terms
of number of preemptions and schedulability.Second attempt
does better than IUF in context switching, response time and
schedulability.

In order to reduce context switching observed in IUF, an
approach of IRIS is used i.e. task is logically divided into two
parts i) Mandatory portion and ii) Optional portion. With
scheduling mandatory portion by highest instantaneous
utilization first and optional portion by shortest optional portion
first, results observed are encouraging. It has been observed that
context switching, response time and CPU utilization has been
increased as compared with IUF scheduling algorithm. This
framework also suggests redundancy to mandatory portions so
as to increase reliability of schedulers. Introducing this concept,
the necessity of adding error checking bits is removed. It
increases resource utilization by compromising in the
performability.

REFERENCES

[1] C. L. Liu and J. W. Layland,“Scheduling algorithms for multiprogramming
in a hard-real-time environment,”Journal of the ACM, 20(1), pp.47-
61January 1973.

[2] Leung J. and Merrill M., A note on preemptive scheduling of periodic real-
time tasks, Information Processing Letters, 11(3): 115–118, 1980.

[3] Dhall S.K., Scheduling periodic-time critical jobs on single processor and
multiprocessor computing systems, PhD thesis, University of Illinois, April
1977.

[4] Sorenson P.G., A methodology for real-time system development, PhD
Thesis, University of Toronto, Canada, 1974.

[5] D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of Sensor-Based
Control Systems,” in Real-Time Programming (W. Halang and K.
Ramamritham, eds.), Tarrytown, NY: Pergamon Press, 1992.

[6] K.Ramamritham,J.A. Stankovic, P.Shiah, “Efficient scheduling algorithms
for real time multiprocessor system,” IEEE Transaction on parallel and
distributed system, 1(2):pp.184-94. Apr, 1990.

[7] J. Goossens, S. Funk, and S. K. Baruah, “Priority-Driven Scheduling of
Periodic Task Systems on Multiprocessors.” Real-Time Systems, vol. 25,
no. 2-3, 2003, , pp. 187-205.

[8] T. P. Baker, “Multiprocessor EDF and Deadline Monotonic Schedulability
Analysis.” in IEEE Real-Time Systems Symposium (RTSS), 2003, pp.
120129.

 [9] K.J. Lin, S. Natarajan, and J. W. S. Liu, Concord ,“ A distributed system
making use of imprecise results” in Proc. of COMPSAC ’87, Tokyo, Japan,
1987.

 [10] X. Castillo, S.P. McConnel, and D.P. Siewiorek. “Derivation and
Calibration of a Transient Error Reliability Model,”IEEE Transactions on
Computers,31(7), July 1982,pp. 658–671.

[11] H. Kim, A.L.White, and K. G.Shin “ Reliability modeling of hard real-
time systems ,” In Proceedings 28th Int. Symp. on Fault-Tolerant
Computing (FTCS-28),. IEEE Computer Society Press, 1998, pp 304–313.

[12] A. Campbell, P. McDonald, and K. Ray. Single “Event upset rates in
space” IEEE Transactions on Nuclear Science, 39(6): December 1992,
pp.1828–1835.

[13] Arshad Iqbal,Asia Zafar,Bushra Siddique,”Dynamic Queue Deadline first
scheduling algorithm for soft real-time System”,IEEE International
Conference on Emerging Technologies, sept. 17-18 Islamabad,2005, pp.
346-351.

[14] Radhakrishna Naik, Vivek Joshi, R. R. Manthalkar, "IUF Scheduling
Algorithm for Improving the Schedulability, Predictability and

Sustainability of the Real Time System," ICETET-09,IEEE Second
International Conference on Emerging Trends in Engineering &
Technology, pp.998-1003, 2009.

[15] Radhakrishna Naik, R. R. Manthalkar, "Modified IUF Scheduling
Algorithm for the Real Time Systems," ICETET-10,IEEE third
International Conference on Emerging Trends in Engineering &
Technology, pp.712-716, 2010.

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 654-662

662

